Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(9): e3002284, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37708127

RESUMO

During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.


Assuntos
Caenorhabditis elegans , Agregados Proteicos , Animais , Envelhecimento , Complexo de Endopeptidases do Proteassoma , Proteostase
2.
PLoS Genet ; 19(7): e1010832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37399201

RESUMO

Adaptation of organisms to environmental change may be facilitated by the creation of new genes. New genes without homologs in other lineages are known as taxonomically-restricted orphan genes and may result from divergence or de novo formation. Previously, we have extensively characterized the evolution and origin of such orphan genes in the nematode model organism Pristionchus pacificus. Here, we employ large-scale transcriptomics to establish potential functional associations and to measure the degree of transcriptional plasticity among orphan genes. Specifically, we analyzed 24 RNA-seq samples from adult P. pacificus worms raised on 24 different monoxenic bacterial cultures. Based on coexpression analysis, we identified 28 large modules that harbor 3,727 diplogastrid-specific orphan genes and that respond dynamically to different bacteria. These coexpression modules have distinct regulatory architecture and also exhibit differential expression patterns across development suggesting a link between bacterial response networks and development. Phylostratigraphy revealed a considerably high number of family- and even species-specific orphan genes in certain coexpression modules. This suggests that new genes are not attached randomly to existing cellular networks and that integration can happen very fast. Integrative analysis of protein domains, gene expression and ortholog data facilitated the assignments of biological labels for 22 coexpression modules with one of the largest, fast-evolving module being associated with spermatogenesis. In summary, this work presents the first functional annotation for thousands of P. pacificus orphan genes and reveals insights into their integration into environmentally responsive gene networks.


Assuntos
Genoma Helmíntico , Nematoides , Animais , Nematoides/genética , Nematoides/microbiologia
3.
Nat Ecol Evol ; 7(3): 424-439, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717742

RESUMO

Large-scale genome-structural evolution is common in various organisms. Recent developments in speciation genomics revealed the importance of inversions, whereas the role of other genome-structural rearrangements, including chromosome fusions, have not been well characterized. We study genomic divergence and reproductive isolation of closely related nematodes: the androdioecious (hermaphroditic) model Pristionchus pacificus and its dioecious sister species Pristionchus exspectatus. A chromosome-level genome assembly of P. exspectatus using single-molecule and Hi-C sequencing revealed a chromosome-wide rearrangement relative to P. pacificus. Strikingly, genomic characterization and cytogenetic studies including outgroup species Pristionchus occultus indicated two independent fusions involving the same chromosome, ChrIR, between these related species. Genetic linkage analysis indicated that these fusions altered the chromosome-wide pattern of recombination, resulting in large low-recombination regions that probably facilitated the coevolution between some of the ~14.8% of genes across the entire genomes. Quantitative trait locus analyses for hybrid sterility in all three sexes revealed that major quantitative trait loci mapped to the fused chromosome ChrIR. While abnormal chromosome segregations of the fused chromosome partially explain hybrid female sterility, hybrid-specific recombination that breaks linkage of genes in the low-recombination region was associated with hybrid male sterility. Thus, recent chromosome fusions repatterned recombination rate and drove reproductive isolation during Pristionchus speciation.


Assuntos
Nematoides , Isolamento Reprodutivo , Animais , Feminino , Masculino , Nematoides/genética , Cromossomos , Genoma , Recombinação Genética
4.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35980151

RESUMO

Nematodes such as Caenorhabditis elegans and Pristionchus pacificus are extremely successful model organisms for comparative biology. Several studies have shown that phenotypic novelty but also conserved processes are controlled by taxon-restricted genes. To trace back the evolution of such new or rapidly evolving genes, a robust phylogenomic framework is indispensable. Here, we present an improved version of the genome of Parapristionchus giblindavisi which is the only known member of the sister group of Pristionchus. Relative to the previous short-read assembly, the new genome is based on long reads and displays higher levels of contiguity, completeness, and correctness. Specifically, the number of contigs dropped from over 7,303 to 735 resulting in an N50 increase from 112 to 791 kb. We made use of the new genome to revisit the evolution of multiple gene families. This revealed Pristionchus-specific expansions of several environmentally responsive gene families and a Pristionchus-specific loss of the de novo purine biosynthesis pathway. Focusing on the evolution of sulfatases and sulfotransferases, which control the mouth form plasticity in P. pacificus, reveals differences in copy number and genomic configurations between the genera Pristionchus and Parapristionchus. Altogether, this demonstrates the utility of the P. giblindavisi genome to date and polarizes lineage-specific patterns.


Assuntos
Nematoides , Rabditídios , Animais , Caenorhabditis elegans/genética , Genoma , Nematoides/genética , Purinas/metabolismo , Rabditídios/genética , Sulfatases/genética , Sulfatases/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
5.
Curr Biol ; 32(9): 2037-2050.e4, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397201

RESUMO

Animals are associated with a diverse bacterial community that impacts host physiology. It is well known that nutrients and enzymes synthesized by bacteria largely expand host metabolic capacity. Bacteria also impact a wide range of animal physiology that solely depends on host genetics through direct interaction. However, studying the synergistic effects of the bacterial community remains challenging due to its complexity. The omnivorous nematode Pristionchus pacificus has limited digestive efficiency on bacteria. Therefore, we established a bacterial collection that represents the natural gut microbiota that are resistant to digestion. Using this collection, we show that the bacterium Lysinibacillus xylanilyticus by itself provides limited nutritional value, but in combination with Escherichia coli, it significantly promotes life-history traits of P. pacificus by regulating the neuroendocrine peptide in sensory neurons. This gut-to-brain communication depends on undigested L. xylanilyticus providing Pristionchus nematodes a specific fitness advantage to compete with nematodes that rupture bacteria efficiently. Using RNA-seq and CRISPR-induced mutants, we show that 1-h exposure to L. xylanilyticus is sufficient to stimulate the expression of daf-7-type TGF-ß signaling ligands, which induce a global transcriptome change. In addition, several effects of L. xylanilyticus depend on TGF-ß signaling, including olfaction, body size regulation, and a switch of energy allocation from lipid storage to reproduction. Our results reveal the beneficial effects of a gut bacterium to modify life-history traits and maximize nematode survival in natural habitats.


Assuntos
Microbioma Gastrointestinal , Nematoides , Rabditídios , Animais , Bactérias , Caenorhabditis elegans/fisiologia , Nematoides/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
6.
Zootaxa ; 4943(1): zootaxa.4943.1.1, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33757041

RESUMO

The model organism Pristionchus pacificus and the genus Pristionchus, Kreis, 1932 have been intensively studied in the last decade with contemporary work focusing on the development, evolution, ecology, behavior, neurobiology, and genomics of this group of organisms. In particular, mechanistic studies on the development and evolution of mouth-form plasticity, predation and associated self-recognition processes enabled unique insight into life history strategies and the evolution of novelty. These studies include a comparative research agenda making use of the 39 available species of Pristionchus, all of which can be studied in living cultures. Sampling efforts revealed that Asia represents a biodiversity hotspot for Pristionchus worms. However, previous samplings have a bias towards northern and island areas, largely for logistic reasons. Here, we report on two extensive sampling trips to the Yunnan and Shaanxi provinces in Mainland China. We report the isolation of nine new Pristionchus species by morphology, morphometrics, mating experiments and genome-wide sequence analysis.


Assuntos
Nematoides , Rabditídios , Animais , China , Nematoides/genética , Filogenia , Especificidade da Espécie
7.
PLoS Pathog ; 16(12): e1009113, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33270811

RESUMO

Comparative studies using non-parasitic model species such as Caenorhabditis elegans, have been very helpful in investigating the basic biology and evolution of parasitic nematodes. However, as phylogenetic distance increases, these comparisons become more difficult, particularly when outside of the nematode clade to which C. elegans belongs (V). One of the reasons C. elegans has nevertheless been used for these comparisons, is that closely related well characterized free-living species that can serve as models for parasites of interest are frequently not available. The Clade IV parasitic nematodes Strongyloides are of great research interest due to their life cycle and other unique biological features, as well as their medical and veterinary importance. Rhabditophanes, a closely related free-living genus, forms part of the Strongyloidoidea nematode superfamily. Rhabditophanes diutinus (= R. sp. KR3021) was included in the recent comparative genomic analysis of the Strongyloididae, providing some insight into the genomic nature of parasitism. However, very little is known about this species, limiting its usefulness as a research model. Here we provide a species description, name the species as R. diutinus and investigate its life cycle and subsequently gene expression in multiple life stages. We identified two previously unreported starvation induced life stages: dauer larvae and arrested J2 (J2A) larvae. The dauer larvae are morphologically similar to and are the same developmental stage as dauers in C. elegans and infective larvae in Strongyloides. As in C. elegans and Strongyloides, dauer formation is inhibited by treatment with dafachronic acid, indicating some genetic control mechanisms are conserved. Similarly, the expression patterns of putative dauer/infective larva control genes resemble each other, in particular between R. diutinus and Strongyloides spp. These findings illustrate and increase the usefulness of R. diutinus as a non-parasitic, easy to work with model species for the Strongyloididae for studying the evolution of parasitism as well as many aspects of the biology of Strongyloides spp, in particular the formation of infective larvae.


Assuntos
Strongyloidea/fisiologia , Animais , Larva , Estágios do Ciclo de Vida , Partenogênese
8.
Nature ; 584(7821): 410-414, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641833

RESUMO

In metazoans, the secreted proteome participates in intercellular signalling and innate immunity, and builds the extracellular matrix scaffold around cells. Compared with the relatively constant intracellular environment, conditions for proteins in the extracellular space are harsher, and low concentrations of ATP prevent the activity of intracellular components of the protein quality-control machinery. Until now, only a few bona fide extracellular chaperones and proteases have been shown to limit the aggregation of extracellular proteins1-5. Here we performed a systematic analysis of the extracellular proteostasis network in Caenorhabditis elegans with an RNA interference screen that targets genes that encode the secreted proteome. We discovered 57 regulators of extracellular protein aggregation, including several proteins related to innate immunity. Because intracellular proteostasis is upregulated in response to pathogens6-9, we investigated whether pathogens also stimulate extracellular proteostasis. Using a pore-forming toxin to mimic a pathogenic attack, we found that C. elegans responded by increasing the expression of components of extracellular proteostasis and by limiting aggregation of extracellular proteins. The activation of extracellular proteostasis was dependent on stress-activated MAP kinase signalling. Notably, the overexpression of components of extracellular proteostasis delayed ageing and rendered worms resistant to intoxication. We propose that enhanced extracellular proteostasis contributes to systemic host defence by maintaining a functional secreted proteome and avoiding proteotoxicity.


Assuntos
Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Espaço Extracelular/metabolismo , Agregados Proteicos , Proteostase , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Sistema de Sinalização das MAP Quinases , Agregação Patológica de Proteínas/prevenção & controle , Proteoma/genética , Proteoma/metabolismo , Interferência de RNA
9.
ISME J ; 14(7): 1911, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32246130

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
ISME J ; 14(6): 1494-1507, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32152389

RESUMO

Although the microbiota is known to affect host development, metabolism, and immunity, its impact on host behavior is only beginning to be understood. In order to better characterize behavior modulation by host-associated microorganisms, we investigated how bacteria modulate complex behaviors in the nematode model organism Pristionchus pacificus. This nematode is a predator that feeds on the larvae of other nematodes, including Caenorhabditis elegans. By growing P. pacificus on different bacteria and testing their ability to kill C. elegans, we reveal large differences in killing efficiencies, with a Novosphingobium species showing the strongest enhancement. This enhanced killing was not accompanied by an increase in feeding, which is a phenomenon known as surplus killing, whereby predators kill more prey than necessary for sustenance. Our RNA-seq data demonstrate widespread metabolic rewiring upon exposure to Novosphingobium, which facilitated screening of bacterial mutants with altered transcriptional responses. We identified bacterial production of vitamin B12 as an important cause of such enhanced predatory behavior. Although vitamin B12 is an essential cofactor for detoxification and metabolite biosynthesis, shown previously to accelerate development in C. elegans, supplementation with this enzyme cofactor amplified surplus killing in P. pacificus, whereas mutants in vitamin B12-dependent pathways reduced surplus killing. By demonstrating that production of vitamin B12 by host-associated microbiota can affect complex host behaviors, we reveal new connections between animal diet, microbiota, and nervous system.


Assuntos
Bactérias/metabolismo , Nematoides/fisiologia , Vitamina B 12/metabolismo , Animais , Caenorhabditis elegans/microbiologia , Microbiota , Nematoides/microbiologia , Comportamento Predatório , Vitaminas/metabolismo
11.
Curr Biol ; 28(19): 3123-3127.e5, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30245109

RESUMO

Mutation and recombination are main drivers of phenotypic diversity, but the ability to create new allelic combinations is strongly dependent on the mode of reproduction. While most animals are dioecious (i.e., separated male and female sexes), in a number of evolutionary lineages females have gained the ability to self-fertilize [1, 2], with drastic consequences on effective recombination rate, genetic diversity, and the efficacy of selection [3]. In the genus Caenorhabditis, such hermaphroditic or androdioecious lineages, including C. briggsae and C. tropicalis, display a genome shrinkage relative to their dioecious sister species C. nigoni and C. brenneri, respectively [4, 5]. However, common consequences of reproductive modes on nematode genomes remain unknown, because most taxa contain single or few androdioecious species. One exception is the genus Pristionchus, with seven androdioecious species. Pristionchus worms are found in association with scarab beetles in worldwide samplings, resulting in deep taxon sampling and currently 39 culturable and available species. Here, we use phylotranscriptomics of all 39 Pristionchus species to provide a robust phylogeny based on an alignment of more than 2,000 orthologous clusters, which indicates that the seven androdioecious species represent six independent lineages. We show that gene loss is more prevalent in all hermaphroditic lineages than in dioecious relatives and that the majority of lost genes evolved recently in the Pristionchus genus. Further, we provide evidence that genes with male-biased expression are preferentially lost in hermaphroditic lineages. This supports a contribution of adaptive gene loss to shaping nematode genomes following the evolution of hermaphroditism.


Assuntos
Transtornos do Desenvolvimento Sexual/genética , Reprodução/genética , Rabditídios/genética , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Evolução Molecular , Feminino , Perfilação da Expressão Gênica/métodos , Genoma , Masculino , Nematoides/genética , Partenogênese/genética , Filogenia , Autofertilização/genética , Especificidade da Espécie
12.
Cell Rep ; 23(10): 2835-2843.e4, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874571

RESUMO

Switching between alternative complex phenotypes is often regulated by "supergenes," polymorphic clusters of linked genes such as in butterfly mimicry. In contrast, phenotypic plasticity results in alternative complex phenotypes controlled by environmental influences rather than polymorphisms. Here, we show that the developmental switch gene regulating predatory versus non-predatory mouth-form plasticity in the nematode Pristionchus pacificus is part of a multi-gene locus containing two sulfatases and two α-N-acetylglucosaminidases (nag). We provide functional characterization of all four genes, using CRISPR-Cas9-based reverse genetics, and show that nag genes and the previously identified eud-1/sulfatase have opposing influences. Members of the multi-gene locus show non-overlapping neuronal expression and epistatic relationships. The locus architecture is conserved in the entire genus Pristionchus. Interestingly, divergence between paralogs is counteracted by gene conversion, as inferred from phylogenies and genotypes of CRISPR-Cas9-induced mutants. Thus, we found that physical linkage accompanies regulatory linkage between switch genes controlling plasticity in P. pacificus.


Assuntos
Adaptação Fisiológica/genética , Sequência Conservada , Genes Controladores do Desenvolvimento , Loci Gênicos , Animais , Sequência de Bases , Padronização Corporal , Evolução Molecular , Conversão Gênica , Genes de Helmintos , Interneurônios/metabolismo , Nematoides/genética , Nematoides/fisiologia , Fenótipo , Células Receptoras Sensoriais/metabolismo , Sintenia/genética
13.
PLoS One ; 11(10): e0164881, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741297

RESUMO

Nematodes, the earth's most abundant metazoa are found in all ecosystems. In order to survive in diverse environments, they have evolved distinct feeding strategies and they can use different food sources. While some nematodes are specialists, including parasites of plants and animals, others such as Pristionchus pacificus are omnivorous feeders, which can live on a diet of bacteria, protozoans, fungi or yeast. In the wild, P. pacificus is often found in a necromenic association with beetles and is known to be able to feed on a variety of microbes as well as on nematode prey. However, in laboratory studies Escherichia coli OP50 has been used as standard food source, similar to investigations in Caenorhabditis elegans and it is unclear to what extent this biases the obtained results and how relevant findings are in real nature. To gain first insight into the variation in traits induced by a non-bacterial food source, we study Pristionchus-fungi interactions under laboratory conditions. After screening different yeast strains, we were able to maintain P. pacificus for at least 50-60 generations on Cryptococcus albidus and Cryptococcus curvatus. We describe life history traits of P. pacificus on both yeast strains, including developmental timing, survival and brood size. Despite a slight developmental delay and problems to digest yeast cells, which are both reflected at a transcriptomic level, all analyses support the potential of Cryptococcus strains as food source for P. pacificus. In summary, our work establishes two Cryptococcus strains as alternative food source for P. pacificus and shows change in various developmental, physiological and morphological traits, including the transcriptomic profiles.


Assuntos
Cryptococcus/fisiologia , Nematoides/genética , Transcriptoma , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Estágios do Ciclo de Vida , Microscopia , Nematoides/crescimento & desenvolvimento , Nematoides/metabolismo
14.
Nat Commun ; 7: 12337, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27487725

RESUMO

Phenotypic plasticity has been suggested to act through developmental switches, but little is known about associated molecular mechanisms. In the nematode Pristionchus pacificus, the sulfatase eud-1 was identified as part of a developmental switch controlling mouth-form plasticity governing a predatory versus bacteriovorous mouth-form decision. Here we show that mutations in the conserved histone-acetyltransferase Ppa-lsy-12 and the methyl-binding-protein Ppa-mbd-2 mimic the eud-1 phenotype, resulting in the absence of one mouth-form. Mutations in both genes cause histone modification defects and reduced eud-1 expression. Surprisingly, Ppa-lsy-12 mutants also result in the down-regulation of an antisense-eud-1 RNA. eud-1 and antisense-eud-1 are co-expressed and further experiments suggest that antisense-eud-1 acts through eud-1 itself. Indeed, overexpression of the antisense-eud-1 RNA increases the eud-1-sensitive mouth-form and extends eud-1 expression. In contrast, this effect is absent in eud-1 mutants indicating that antisense-eud-1 positively regulates eud-1. Thus, chromatin remodelling and antisense-mediated up-regulation of eud-1 control feeding plasticity in Pristionchus.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Genes Controladores do Desenvolvimento , Genes de Helmintos , Genes de Troca , Nematoides/genética , Comportamento Predatório , RNA Antissenso/metabolismo , Regulação para Cima/genética , Animais , Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Pleiotropia Genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Boca , Mutação/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Sci Adv ; 2(1): e1501031, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26824073

RESUMO

Diversification is commonly understood to be the divergence of phenotypes accompanying that of lineages. In contrast, alternative phenotypes arising from a single genotype are almost exclusively limited to dimorphism in nature. We report a remarkable case of macroevolutionary-scale diversification without genetic divergence. Upon colonizing the island-like microecosystem of individual figs, symbiotic nematodes of the genus Pristionchus accumulated a polyphenism with up to five discrete adult morphotypes per species. By integrating laboratory and field experiments with extensive genotyping of individuals, including the analysis of 49 genomes from a single species, we show that rapid filling of potential ecological niches is possible without diversifying selection on genotypes. This uncoupling of morphological diversification and speciation in fig-associated nematodes has resulted from a remarkable expansion of discontinuous developmental plasticity.


Assuntos
Ficus/genética , Ficus/parasitologia , Nematoides/genética , Simbiose/genética , Animais , Evolução Biológica , Ecologia , Especiação Genética , Genoma/genética , Genótipo , Filogenia , Isolamento Reprodutivo
16.
Zoolog Sci ; 30(8): 680-92, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23915163

RESUMO

Pristionchus pacificus Sommer, Carta, Kim, and Sternberg, 1996 is an important model organism in evolutionary biology that integrates developmental biology with ecology and population genetics. This species is part of a sub-complex of the genus Pristionchus that is considered to have originated in East Asia. Here, we describe two new species of Pristionchus, P. maxplancki and P. quartusdecimus, which were isolated from beetles in Japan, supporting the hypothesis that a region including Japan is the origin of diversification of the P. pacificus species complex. Phytogeny inferred from a partial small subunit rRNA gene and 25 ribosomal protein genes shows P. maxplancki to be the closest known outgroup to a triad of sibling species, including P. pacificus. Pristionchus quartusdecimus is a putative outgroup to the P. pacificus species complex, supporting a more ancient origin of Pristionchus species in the region. Species diagnoses are based on morphological and molecular characters, in addition to reproductive isolation for P. maxplancki. Members of the P. pacificus species complex as well as P. quartusdecimus are distinguished by stegostomatal structures, male genital papilla arrangement, and gubernaculum shape. The discovery of a new member of the P. pacificus species complex allows greater precision in polarizing and reconstructing ancestral states in the comparative model system centering on P. pacificus. Together with previous reports, these findings support an important biogeographic role of Japan in the evolution of the genus Pristionchus and the P. pacificus species complex, especially the associated phenotypic evolution of mouth morphology.


Assuntos
Evolução Biológica , Nematoides/classificação , Nematoides/genética , Animais , Feminino , Japão , Masculino , Especificidade da Espécie
17.
J Nematol ; 45(1): 78-86, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23589663

RESUMO

Pristionchus bucculentus n. sp. was isolated from a shining mushroom beetle, Episcapha gorhami, associated with white rot on a decaying log in Hokkaido, Japan. The new species is distinguished by its stomatal morphology, which includes three regularly shaped, conical left subventral denticles and a vacuolated cheilostom with weak internal sclerotization. Also distinguishing P. bucculentus n. sp. are male sexual characters, including arrangement of genital papillae, a rounded and ventrally skewed manubrium, and a gubernaculum with a large, deep posterior curvature and a short, shallow anterior curvature. Morphological and molecular evidence support the new species as being close to P. elegans, which was previously the most basal known species of the genus. Comparative morphology of basal Pristionchus species is supported by a molecular phylogeny inferred from a partial small subunit ribosomal rRNA gene and 25 ribosomal protein-coding genes. Description of P. bucculentus n. sp. provides a new point of comparison for reconstructing the evolution of stomatal characters in the comparative model system of Pristionchus.

18.
Curr Biol ; 16(14): 1386-94, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16860737

RESUMO

BACKGROUND: Nematode vulva formation provides a paradigm to study the evolution of pattern formation and cell-fate specification. The Caenorhabditis elegans vulva is generated from three of six equipotent cells that form the so-called vulva equivalence group. During evolution, the size of the vulva equivalence group has changed: Panagrellus redivivus has eight, C. elegans six, and Pristionchus pacificus only three cells that are competent to form vulval tissue. In P. pacificus, programmed cell death of individual vulval precursor cells alters the size of the vulva equivalence group. RESULTS: We have identified the genes controlling this cell-death event and the molecular mechanism of the reduction of the vulva equivalence group. Mutations in Ppa-hairy, a gene that is unknown from C. elegans, result in the survival of two precursor cells, which expands the vulva equivalence group. Mutations in Ppa-groucho cause a similar phenotype. Ppa-HAIRY and Ppa-GROUCHO form a molecular module that represses the Hox gene Ppa-lin-39 and thereby reduces the size of the vulva equivalence group. The C. elegans genome does not encode a similar hairy-like gene, and no typical HAIRY/GROUCHO module exists. CONCLUSIONS: We conclude that the vulva equivalence group in Pristionchus is patterned by a HAIRY/GROUCHO module, which is absent in Caenorhabditis. Thus, changes in the number, structure, and function of nematode hairy-like transcription factors are involved in the evolutionary alteration of this equivalence group.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Evolução Biológica , Proteínas de Helminto/fisiologia , Nematoides/crescimento & desenvolvimento , Proteínas Repressoras/fisiologia , Vulva/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Apoptose , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Sequências Hélice-Alça-Hélice , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Dados de Sequência Molecular , Mutação , Nematoides/citologia , Nematoides/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Alinhamento de Sequência , Vulva/citologia , Vulva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...